Lycée Pilote Monastir

2011/2012

DEVOIR DE CONTROLE

MATHEMATIQUE

Classe 3M₂

« 2H »

EXERCICE N°1 (4 points)

Répondre par Vrai ou Faux (aucune justification n'est demandée)

- **1)** Si (\vec{u}, \vec{v}) est une base orthonormée indirecte alors $\det(\vec{v}, \vec{u}) = 1$
- **2)** Soit L,P et M trois points distincts et L' , P' et M' leurs images respectives

Par une homothétie. Alors $(\overrightarrow{L'P'}^{\,\,\,}, \overrightarrow{L'M'}) \equiv \left(\overrightarrow{LP}^{\,\,\,}, \overrightarrow{LM}\right) \left[2\pi\right]$

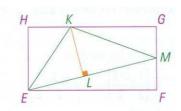
- **3)** Soit a un réel et f une fonction définie sur $]-\infty,a]$. $\lim_{-\infty} f=l$ si pour tout $\varepsilon>0$, il existe un réel B <0 , tel que si $x\leq a$ et x<B alors $|l-f(x)|<\varepsilon$
- **4)** Soit $f(x) = \sqrt{x^2 4x + 5}$, la droite d'équation y = -x + 2 est une asymptote à Cf Au voisinage de $-\infty$

EXERCICE N°2 (4 points)

EFGH est un rectangle, avec EH = a et EF = 2a. M est le milieu de [FG] et K est définie par $\overrightarrow{HK} = \frac{1}{3}.\overrightarrow{HG}$.

L est le projeté orthogonal de k sur (EM).

- **1)** Calculer en fonction de a les produits scalaires : $\overrightarrow{EF}.\overrightarrow{EM}$ et $\overrightarrow{EH}.\overrightarrow{EK}$.
- **2)** En calculant de plusieurs façons le produit scalaire $\overrightarrow{EK}.\overrightarrow{EM}$, déterminer :
 - -La valeur de la longueur EL en fonction de a ;
 - -Une mesure de l'angle $\stackrel{\frown}{KEM}$ (à 0,1° près)



EXERCICE N°3 (5 points)

Soit ABC un triangle rectangle en A tel que : AB = $2a\sqrt{3}$, AC = 2a , a > 0

- **1)** a) Montrer que $\overrightarrow{AB}.\overrightarrow{BC} = -12a^2$
 - b) Déduire $\cos(\overrightarrow{AB}^{\wedge}, \overrightarrow{BC})$ puis déduire une mesure dans l'intervalle $[\pi, 2\pi]$ de l'angle $(\overrightarrow{AB}, \overrightarrow{BC})$
- **2)** Soit ζ le cercle de diamètre [AC], la droite (BC) coupe ζ en D Montrer que $\overline{BD} \times \overline{BC} = BA^2$
- 3) Soit M un point variable sur le cercle ζ et N un point du plan tel que $2\overrightarrow{AN} \overrightarrow{AM} \overrightarrow{AB} = \overrightarrow{o}$. Déterminer et construire l'ensemble des points N quand M décrit le cercle ζ

EXERCICE N°4 (7 points)

Soit f la fonction définie sur IR par : $f(x) = x^3 + x - 1$

- 1) a) Etudier les variations de f sur IR.
 - b) Montrer que l'équation f(x)=0 admet une seule solution α dans]0,1[et vérifier que $\alpha=\sqrt{\frac{1-\alpha}{\alpha}}$
 - c) Dresser le tableau de variation de f et préciser le signe de f(x) pour tout réel x
- **2)** Soit g la fonction définie par g(x) = $\begin{cases} \sqrt{x^2 \alpha x + 1} & si \ x \le \alpha \\ x(x^2 + 1) & si \ x > \alpha \end{cases}$
 - a) Déterminer le domaine de définition de g
 - b) Montrer que g est continue en α
 - c) Montrer que la droite D : $y=-x+\frac{\alpha}{2}$ est une asymptote oblique à (Cg) au V($-\infty$)
- **3)** Soit h la fonction définie sur IR $/\{\alpha\}$ par : h(x) = $\frac{g(x)-1}{x-\alpha}$ h est-elle prolongeable par continuité en α ?